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Cookbook review

“We selected 50 common ingredients from random
recipes of a cookbook”
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Cookbook review

veal, salt, pepper spice, flour, egg, bread, pork, 
butter, tomato, lemon, duck, onion, celery, carrot, 
parsley, mace, sherry, olive, mushroom, tripe, 
milk, cheese, coffee, bacon, sugar, lobster, 
potato, beef, lamb, mustard, nuts, wine, peas, 
corn, cinnamon, cayenne, orange, tea, rum, 
raisin, bay leaf, cloves, thyme, vanilla, hickory, 
molasses, almonds, baking soda, ginger, terrapin
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molasses, almonds, baking soda, ginger, terrapin

HOW MANY HAVE BEEN INVESTIGATED 
FOR RELATION TO CANCER?
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40/50 (80%)
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Cookbook review

veal, salt, pepper spice, flour, egg, bread, pork, 
butter, tomato, lemon, duck, onion, celery, carrot, 
parsley, mace, sherry, olive, mushroom, tripe, 
milk, cheese, coffee, bacon, sugar, lobster, 
potato, beef, lamb, mustard, nuts, wine, peas, 
corn, cinnamon, cayenne, orange, tea, rum, raisin

HOW MANY OF THE INVESTIGATED 
INGREDIENTS HAVE BEEN REPORTED 
TO INCREASE OR DECREASE RISK OF 
CANCER?
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Cookbook review

veal, salt, pepper spice, flour, egg, bread, pork, 
butter, tomato, lemon, duck, onion, celery, carrot, 
parsley, mace, sherry, olive, mushroom, tripe, 
milk, cheese, coffee, bacon, sugar, lobster, 
potato, beef, lamb, mustard, nuts, wine, peas, 
corn, cinnamon, cayenne, orange, tea, rum, raisin

36/40 (90%)



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Research waste: 85% (?)



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Statistical illiteracy?

Andrew Vickers, Nat Rev Urol, 2005, doi: 10.1038/ncpuro0294



ABSENCE OF EVIDENCE FALLACY
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Hypothetical example

Factor B

Factor A
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Hypothetical example

Tea

Coffee
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Hypothetical example

Tea

Coffee

“No health consequences for Coffee”

“Negative health consequences for Tea”
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Hypothetical example

Tea

Coffee

“No health consequences for Coffee”
“No effect of Coffee”
“Coffee is healthy”
“Coffee is better for health than tea” 

“Negative health consequences for Tea”
“Tea is bad for health”
“Tea kills”
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Non-inferiority

Source fig doi: 10.1007/s11606-018-4813-z



TABLE 2 FALLACY
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Observational (non-randomized) study

A

L

Y

exposure outcome

confounder
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Observational (non-randomized) study

A

L

Y

Diet Diabetes

confounder
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Diet -> diabetes, age a counfounder?

Numerical example adapted from Peter Tennant with permission
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Diet -> diabetes, weight loss a confounder?
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Beware of the colliders

A

L

Y

Diet Diabetes

Weight loss
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Careful selection of confounders, e.g. through DAGs

From Tennant et al, IJE, 2021, doi: 10.1093/ije/dyaa213
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Example of multivariable model table
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Table 2 fallacy

Common approach:
• Fit a multivariable regression model using all “risk factors” of 

interest
• Presents estimates of regression coefficients as mutually

adjusted for each other
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Example of Table 2 fallacy
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Example of Table 2 fallacy
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WINNER’S CURSE
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Distribution of 1.1m z-values in medical literature

Source: https://agbarnett.github.io/talks/TRI/slides#13
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Myth 1: The number of variables in a model should be reduced
until there are 10 events per variables.

Myth 2: Only variables with proven univariable-model significance
should be included in a model.

Myth 3: Insignificant effects should be eliminated from a model.

Myth 4: The reported P-value quantifies the type I error of a 
variable being falsely selected.

Myth 5: Variable selection simplifies analysis.



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Myth 1: The number of variables in a model should be reduced
until there are 10 events per variables.

Myth 2: Only variables with proven univariable-model significance
should be included in a model.

Myth 3: Insignificant effects should be eliminated from a model.

Myth 4: The reported P-value quantifies the type I error of a 
variable being falsely selected.

Myth 5: Variable selection simplifies analysis.



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Variable selection can be very instable in low N
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Illustrative example
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Illustrative example



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Illustrative example
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Illustrative example
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Winner’s curse
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Variable selection often makes things worse

Investigated 3960 scenario’s, backward elimination made 
exposure effect estimation worse 97% of the time 
(in remaining 3% improvements were neglegible)
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Variable selection…

• Is often instable (e.g. small N or high collinearity)
• Can create testimation bias
• Can invalidate inferential statistics: default p-values and

confidence intervals not valid (post-selection inference literature)
• Can be a source of model overfitting



STEIN’S PARADOX
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1955: Stein’s paradox
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Stein’s paradox in words (rather simplified)

When one has three or more units (say, individuals), and
for each unit one can calculate an average score (say, 
average blood pressure), then the best guess of future
observations for each unit (say, blood pressure tomorrow) 
is NOT the average score.
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1961: James-Stein estimator: the next Berkley Symposium

• James and Stein. Estimation with quadratic loss. Proceedings of the fourth Berkeley 
symposium on mathematical statistics and probability. Vol. 1. 1961.
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1977: Baseball example

Squared error reduced from .077 to .022
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Stein’s paradox

• Probably among the most surprising (and initially
doubted) phenomena in statistics

• Now a large “family”: shrinkage estimators reduce
prediction variance to an extent that typically outweighs
the bias that is introduced

• Bias/variance trade-off principle has motivated many
statistical and machine learning developments

Expected prediction error = irreducible error + bias2 + variance



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Simulation: 100 times
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Not just lucky

• 5% reduction in MSPE just by shrinkage estimator
• Van Houwelingen and le Cessie’s heuristic shrinkage factor
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Shrinkage

Post-estimation shrinkage factor estimation
• Van Houwelingen & Le Cessie, 1990: uniform shrinkage factor
• Sauerbrei 1999: parameterwise shrinkage factors

Regularized regression (shrinkage during estimation)
• Ridge regression: L2-penalty on regression coefficient
• Lasso: L1 penalty
• Elastic net: L1 and L2 penalty
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Shrinkage

Post-estimation shrinkage factor estimation
Pr(𝑌𝑌 = 1) = expit[𝛽𝛽0∗ + 𝑆𝑆𝑉𝑉𝑉𝑉(𝛽𝛽1𝑋𝑋1 + … + 𝛽𝛽𝑃𝑃𝑋𝑋𝑃𝑃)]
• .factors

Regularized regression (shrinkage during estimation)

Lnℒ𝑝𝑝 = Lnℒ𝑚𝑚𝑚𝑚 − 𝜆𝜆 1 − 𝛼𝛼 �
𝑝𝑝=1

𝑃𝑃

𝛽𝛽𝑝𝑝2 + 𝑎𝑎�
𝑝𝑝=1

𝑃𝑃

|𝛽𝛽𝑝𝑝|

Ridge regression: 𝑎𝑎 = 0, Lasso: 𝑎𝑎 = 1, Elastic net 0 < 𝑎𝑎 < 1
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Consequences of shrinkage

• Can improve the accuracy of predictions on average1

• Can reduce (part of) the detrimental effects of overfitting
• In specific situations (e.g. Lasso) it can be used for automated 

variable selection at reduced risk of winner’s curse

• No free lunch principle: shrinkage often introduces (by design) a 
negative bias in regression coefficients 

• Exception: Firth’s correction, e.g. see:

1On average is important here, see: 



PART II:
GOOD STATISTICAL PRACTICE

AVOIDING FALACIES/PARADOXES
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Utopia

Courtesy Anna Lohmann

TRUTHMultivariabl
e model
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Utopia

Courtesy Anna Lohmann

“SOMETHING USEFUL”Multivariabl
e model
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To explain or to predict?

Explanatory models
• Theory: interest in regression coefficients
• Testing and comparing existing causal theories

• e.g. aetiology of illness, effect of treatment

Prediction models
• Interest in (risk) predictions of future observations
• Causality not a primary concern
• Concerns about overfitting and optimism

• e.g. prognostic or diagnostic prediction model

Descriptive models
• Capture the data structure
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To explain or to predict?

Explanatory models
• Absence of absence fallacy: e.g. non-significant effect of 

exposure interpreted as ”not working” (tx) or “not bad for health”

• Table 2 fallacy: e.g. regression coefficients of confounding 
variables interpreted as themselves “adjusted” for confounding

• Winner’s curse: e.g. selected factors on average too extreme 
values for the regression coefficients (i.e. biased)

• Stein’s paradox: shrinkage may lead to a bias that may not be 
beneficial for inference
(but not always, see1)

1https://bit.ly/3VZQFJV
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To explain or to predict?

Prediction models
• Absence of absence fallacy: e.g. non-significant result on 

measure for miscalibration misinterpreted as good calibration

• Table 2 fallacy: e.g. predictors misinterpreted as causal effects

• Winner’s curse: e.g. final model with selected predictors results 
in overfitting

• Stein’s paradox: shrinkage may improve predictions 
(but not always, see1)

1https://bit.ly/3spjPo5



Tromsø, Oct 26, 2022 Twitter: @MaartenvSmeden

Explanatory vs prediction models
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Specific guidance on conduct
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Specific guidance on reporting and risk of bias
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Many other fallacies and paradoxes to consider

• Ecological fallacy
• Lord’s paradox 
• Simpson’s paradox 
• Berkson’s paradox 
• Prosecutors fallacy
• Gambler’s fallacy
• Lindley’s paradox 
• Low birthweight paradox
• Noisy data fallacy
• Will Rogers phenomenon

• …

More info: https://bit.ly/3TylBz7
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Improving epidemiological research: 
avoiding the statistical paradoxes and 
fallacies that nobody else talks about

everyone should talk about and are well 
described in literature
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A gentle (1000 words) introduction
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Email: M.vanSmeden@umcutrecht.nl
Twitter: @MaartenvSmeden
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